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Abstract-The thermal wave behavior in the vicinity of a fast-moving heat source is studied in this work. 
The heating zone is modelled by a circular region with a finite radius and the intensity of the heat- 
production rate is assumed to be nonhomogeneously distributed. The Green’s functions obtained previously 
by Tzou [ASNEJ. Hear Tran~fkr 111,232mm238 (1989); hr. J. Heat Mass TronsJir 32, 197991987 (1989)] 
are used to integrate the temperature waves emanating from the heating zone. A complete description 
covering the subsonic. transonic and supersonic regimes is provided. Several distributions with practical 

importance are considered for the heat-production rate in the numerical examples. 

INTRODUCTION 

LOCAL heating may be induced by an external heat 
source (such as a high-intensity laser beam) or may 
occur as a consequence of defo~ation. In the former 
category, both the intensity of the heat source and 
the geometry of the heating zone can be controlled 
through the heating devices. This information can 

thus be used as an input to the energy equation for 
the determination of the temperature field around the 
heat source. Typical examples in this category include 
the short-p&e laser heating on metals 111 and the 
variation of laser intensity in energy-absorbing 
materials [2]. The latter category, on the other hand, 
is a combined effect of thermal and mechanical inter- 
actions. Typical examples are local heating in the 
vicinity of a rapidly propagating crack tip [3-61, tem- 
perature rise induced by shear banding [7] and focal- 
ization of temperature in high-speed penetration 181. 
Dissipation of plastic energy is the major heat source 
in this type of problem which depends on the way in 
which plasticity is developed in the solid medium. As 
shown by Taylor and Quinney [9] and Beaver et a/. 

[lo], more than 90% of the plastic energy dissipates 
into &he form of heat which may induce an extremely 
high temperature in the local area. For a crack-tip 
propagating at a speed of 900 m s- ’ in 4340 steel, as 
an example, the crack-tip temperature may reach as 
high as 450°C [I I]. In addition to plasticity, friction 
between a penetrator and a target material is another 
important heat source in high-speed penetration. For 
tungsten steel penetrating into aluminum-6061 target, 
melting may occur in the material layer adjacent to the 
penetrator which ranges from nanometers to microns 
depending on the striking velocity. The dynamic 
coefficient of friction in relation to the frictional 
heating is still an ongoing research area in this type 
of problem. 

For slower processes such as conventional heat 

treatment to enhance the local hardness of materials, 
the classical diffusion model assuming an instan- 
taneous equilibrium may be suficient to determine 
the tem~rature distribution in the work-piece. For 
the fast process of local heating described in the pre- 
vious paragraph, however, the process may involve 
a large heat-flux deposited onto a small area in a short 
period of time. Metal heating employing a short-pulse 
laser [ 11, as an example in the first category, involves 
a duration of picoseconds which is comparable to the 
thermal relaxation time of phonons. Local heating in 
dynamic crack propagation, an example in the second 
category, occurs in milli- to micro-second range which 
depends on the crack speed. In addition, the charac- 
teristic dimension of the plastic zone may reduce to 
the order of nanometers for relatively brittle materials 
[I2, 131. An equilibrium state is impossible within 
such a short period of time and the use of di~usion 
model has been questioned when applied to these 
situations. Temperature in the microscopic two-step 
model [I, 141 and the macroscopic thermal wave 
model [ 151 has been shown to be nonequilibrium and 
irreversible in nature. Attempts of applying these 
models to describe heat conduction in short time tran- 
sient have been made in recent years and interrelations 
between the two have been established 116, 171. Most 
importantly, heat conduction becomes a wave 
phenomenon when nonequilibrium and irreversible 
thermodynamic transitions are taken into account [14, 
161. Detailed surveys for research on the two-step 
model [I] and the thermal wave model [16, 18, 191 
have been made extensively and will not be repeated 
here. 

The heating zone involves a finite dimension in most 
engineering probIems. The present study integrates 
the Green’s function of the thermal wave theory [20, 
211 to account for the geometrical effect. A heating 
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NOMENCLATURE 

area [m’] 
parameter, 0/2a [m- ‘1 
thermal wave speed [m s- ‘1 
heat capacity [kJ kg- ’ “C ‘] 
combined functions ~dimensionIess] 
thermal conductivity [W m- ’ “C- ‘1 
modified Bessel function of 
the second kind of order 
i,i=o, I 
thermal Mach number ~dimensionles~] 
volumetric heat generation rate 
[W m-“1 
heat source density per unit length 
[W m- ‘1 
distance in the hypo-space [m] 
distance between the differential heat 
source and the observation point in the 
hypo-space [m] 
dimensionless R 
radius of the circular heating 
zone [m] 
dimensionless radial distance centered at 

v speed of the moving heat source [m s- ‘1 
X, i = I, 2. Physical coordinates centered at 

the origin of the heat source [ml. 

Greek symbols 
thermal diffusivity [m’ s ‘] 
polar angle centered at the observation 
point [rad] 
dimensionless distance 
dimensionless radial distance centered at 
the observation point 
radial distance measured from the center 
of the heat source [m] 
polar angle measured from the trailing 
edge of the heat source [rad] 
thermal shock angle. sin- ’ (l/M) [rad] 
i = 1, 2. Dimensionless coordinates 
centered at the origin of the heat source 
mass density [kg rn-- ‘1 
polar angle centered at the origin of the 
heat source [rad]. 

the origin of the heat source 
physical time [s] 
temperature [“Cl 

Subscripts 

( i?! i = 1, 2. Differentiations with respect to 
x, 

zone with a circular shape shall be used to illustrate 
the procedure. Nonhomogeneous heat intensity gen- 
erated from the heating zone include the Gaussian 
distributions for modelling laser irradiations, I/r- and 
l/Jr-type of distributions for modelling the plastic 
energy dissipation from a rapidly propagating crack 
tip. 

GREEN’S FUNCTIONS 

The thermal Mach number A4 was introduced by 
Tzou [20, 211 to characterize the thermal field around 
a moving heat source. Mathematically, M = u/C with 
~1 being the speed of a moving heat source and C the 
finite speed of heat propagation. The Green’s function 
governing the thermal waves emanating from a point 

heat source satisfies 

where (x, , x2) are the material coordinates convect- 
ing with the point heat source and c a parameter 
defined as c = v/2a. The subscripts in this work, as 
usual, denote differentiations with respect to space. 
The mathematical type of equation (1) is depicted by 
the discriminant 4(M’ - 1). In the subsonic region 

with h4 < I, the equation is elliptic. In transition to the 
transonic (M = 1) and supersonic (M > 1) regimes, 
respectively, the equation transits to a parabolic and a 
h~erbolic type. Thermal shock waves and thermally 
undisturbed zones are formed when M >, 1. In 
addition, the finite wave speed induces an apparent 
heat source term, the derivative of 6(x, ) with respect 
to x,, results from the finite wave speed. The wave 
amplitude of temperature depicted by equation (I), 
therefore, is a combined effect of the real heat source 
exerted on the body and the apparent heat source 
depending on the gradient of the real heat source in 
the material coordinate system. 

Due to intrinsic transition of the mathematical type, 
the Green’s functions satisfying equation (1) were 
obtained by Tzou [20, 211 in the respective regime of 
the thermal Mach number. In summary, they are 

T(x,,xJ =gexp[-c~,i(l-M’)] 
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At the transonic stage with M = I 

with k being the thermal conductivity defined as p&Z,, 
e the heat generation rate per unit fength, and K,, 
the modified Bessel functions of the second kind of 
order n. The quantity r in equations (2) and (4) is the 
distance in the hypo-space stretched from the real 
physical space (x,, x2) according to 

and ~=~(~-.~~) for M>I. (5) 

In the subsonic regime with M < I, r is well-defined 
everywhere in the physical domain and the tem- 
perature distribution is represented by equation (2). 
It reduces to the Green’s function for the diffusion 
equation when A4 is substituted by zero. In the super- 
sonic regime with M > 1, on the other hand, the con- 
dition 

with 0 measured from the trailing edge of the heat 

Thermal 
thermally 

-+ 
I 

M<l M=l M>l 

(a) (b) Cc> 

FIG. 1, Configurations and coordinate systems for a point 
heat source moving in the (a) subsonic, (b) transonic, and 
(c) supersonic regimes. Angie B is measured from the trailing 

edge. 

source shown in Fig. 1 (a), must be satisfied to guaran- 

tee a real value of r. Equation (6) thus defines the 

physical domain of the heat aficted zone in which 
temperature distribution is represented by equation 
(4). The rest of the physical domain is defined as the 
thermally undisturbedzone where temperature remains 
at the reference levei due to the finite speed of heat 
propagation. These situations are illustrated in Fig. 
I(c). When the value of M approaches one, i.e. the 
heat source propagates at the same speed as the ther- 
mal wave speed and M = 1, the U-value in equation 
(6) approaches 90 degrees and the heat affected zone 
is confined to the domain of x, < 0 as illustrated in 
Fig. 1 (b). The temperature distribution is represented 
by equation (5) in this case. When A4 >, 1, most 
importantly, a strong singularity exists at the thermal 
shnck surface at B = sin- ’ (l/,M). The singularity, 
referring to equation (4). switches from a in (r)-type 
(the diffusion theory with M = 0) to a l/r-type (the 
wave theory) due to the effect of finite wave speed. 
Qualitatively, the angle 0, in equalion (6) reveals the 
pre/&wztial direction for the accumulation of thcrmaf 
energy around a fast-moving heat source when the 
transient time is short [18, 20, 211. 

THE CIRCULAR HEATING ZONE 

Equations (2)-(4) are the Green’s functions which 
may be integrated for the temperature dist~bLItions 
in a heat-production zone with a finite dimension. For 
this purpose, the heat-generation rate e in equations 
(2)-(4) is replaced by qdA, with q being the volu- 
metric energy rate deposited into the material volume 
through the differential surface area dA. Integrations 
are then performed over the entire physical domain 
occupied by the heat source. The procedure is straight- 
forward for a heating zone propagating in the sub- 
sonic regime where all the observation points are 
located in the heat affected zone. For a heating zone 
propagating at the transonic and in the supersonic 
regimes, on the other hand, the integration domains 
must be carefully examined due to formation of the 
thermally undisturbed zone. We illustrate this pro- 
cedure by considering a circular region generating 
heat with a I/r-type of distribution. Here, Y denotes 
the radial distance measured from the center of the 
heating zone. This type of distribution simulates the 
thermal energy dissipation due to intensified plasticity 
developed in the vicinity of a rapidly pro~ag~~ting 
crack tip [4, 6. 22. 231. Since the Green’s function 
possesses different expressions in the subsonic, 
transonic, and the supersonic regimes, the integration 
must be performed individually. 

(a) 7%~ subsonic case with M < 1 
Consider a differential heat source Q = y dA 

located at P as shown in Fig. 2. In terms of the polar 
coordinates (v, 4) centered at the origin of the circular 
region, the temperature can be directly integrated as 
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Heating zone moving 

with a speed v 

FIG. 2. The central (a. 4) and local (i, 7) coordinate systems 
used for describing the temperature distribution around a 

circular heating zone. 

x,f’(.x, -q cos 4, x2 -ty sin 4)~ dq d4 

for MCI (7) 

where r0 is the radius of the circular heating zone, y0 
represents the volumetric energy rate with a dis- 
tribution described by the function,f’and 

A numerical integration is needed for equation (7) 
due to complexity of the integrand. Introducing the 

following dimensionless parameters, 

equation (7) becomes 

x.f’(<, --s cos 4, t? --s sin 4)s ds dg 

for M< I 

wilh 

(10) 

R* = 
(5, --scos c$)l 
p--y--m- 

1 -M- 
+ (5 z -s sin 4) ’ 

> 
(11) 

and A = nr& the area of the circular zone. For tem- 

perature outside the heating zone, zc in Fig. 2, the 
regular Gaussian quadrature formula can be applied 
for the numerical integration of s. For the observation 
points inside the heating zone, Z, in Fig. 2, a special 
treatment is needed since equation (10) contains a 
singularity at R* = 0. It occurs when the observation 
point coincides with the differential heat source, 
5, = s cos C/I and t: = s sin 4. In this case the numeri- 
cal integration is performed by employing the local 
coordinates (i.7). In relation to the central coor- 

dinates (s, c$), 

s = J((i cos y+i;,)‘+(isin~+<~)‘). 

(12) 

The integrand of equation (10) can be expressed in 
terms of < and y according to (12) and the domains 
of integrations are changed to 

0 < ;s < 27~ and 

0 d [ < d(l +c,<: sin 21/-([, sin y)‘-({2 COS jl)') 

-(5:, cosl;+r, sin?). (13) 

This procedure reduces the singular part of the inte- 
gration with respect to i (originally s) to the log- 
arithmic type 

S’ 0 ” 
In b s(i) di (14) 

with y(i) being a bounded function at [ = 0. The 
logarithmic Gaussian quadrature formula is then 
readily applicable for this type of numerical inte- 
gration [24]. 

(b) The supersonic cuse with M > I 
In a similar fashion of obtaining equation (IO) from 

equation (2), equation (4) is used instead in this case 
for the temperature distribution. Formation of the 
thermally undisturbed zone when M > 1 constitutes 
additional difficulty in determining the domains of 
integrations. For the circular region moving at a cer- 
tain thermal Mach number M (and hence every 
differential heat source inside), as shown in Fig. 3, the 
field point P may be located in the heat affected zone 
of S, and in the thermally undisturbed zone of SZ. 
The Green’s function for the heat affected zone is 

FIG. 3. Location of the observation point P inside the heat 
affected zone of the differential heat source S, and the therm- 
ally undisturbed zone of S2. The wedge angle is 2 sin- ’ (l/M) 

for the heat affected zone. 
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FIG. 4. Regions A, B, C and D and their corresponding 
domains of integrations in the circular heating zone. Super- 

sonic regime with M > 1. 

represented by equation (4) while remaining at zero 

in the thermally undisturbed zone due to the finite 
speed of heat propagation. The physical domain con- 
taining S,, therefore, has to be excluded in the numeri- 
cal integration for temperature at P. 

Figures 4(a)-(d) summarize the four regions, A- 
D, in the wake area of the heating zone under such 
considerations. Region A shown in Fig. 4(a) is rep- 
resented by the wedge area ahr extending to infinity. 
Mathematically, 

1 
5,<-F--, 

sm 0, 

- (5, + sin 0,) tan 0, for region A (15) 

where only the expression in the upper-half plane is 
given due to symmetry. The field point in region A is 
located in the heat affected zone emanating from any 
differential heat source inside the circular region rep- 
resented by defd in Fig. 4(a). The integration domain 
is thus SE [0, I] and 4~ [0,27c], the entire circular 
region. Region B is represented by the area &de in 
Fig. 4(b). Mathematically, 

F < [ < G for region B (16) 

with 

F= -(<, cosy+rz siny) 

-J(l++5,<z sin 2y-5: sin* y-c: cos* y) 

G = -(t, cosy+<, siny) 

+J(l+t,5*? sin2y-5: sin’ y-_5f cos’ ‘J). (17) 

This region is located in the heat affected zone for any 
differential heat source within the circular 
sector hcdfgh. Unlike region A, however, segment cd 
in this case is in contact with the heat-generation zone. 
Singularities thus result in the numerical integrations 
and local coordinates ([, y) are used instead in equa- 

tion (16) for a logarithmic-type of integral (refer to 
equation (14)). Region C is represented by the closed 
area aby’fca in Fig. 4(c). The differential heat sources 
contributed to the temperature level within region C 
are located in the area edfse within the circular area. 
This area also contacts with the heat-generation zone 
and the domains of integration are 

-0 <lt<Oiw, F<[<G. Ml,1 (18) 

Region D, lastly, is the entire physical domain within 
the heat-generation zone. Any point inside the circular 
region is located in the heat affected zones emanating 
from the differential heat sources at c and h and the 
integration domain is thus the area represented by ahc 
in Fig. 4(d) : 

-O,,, < 1; < 0,. 0 < i < G. (19) 

In evaluating the temperature at a certain point in the 
physical domain, therefore, it is necessary to identify 
the region in which the point belongs to. Appropriate 
integration domains are then selected from equations 
(16)-( 19) in numerical integrations. 

(c) The fransonic stuge with M = 1 
At M = I, as shown in Fig. l(b), a normal shock 

wave exists at 5, = 0 (coincident with the t2 axis) and 
the heat affected zone is in the region with 5, < 0. 
Equation (3) is used in this case for the temperature 
distribution. Two regions, A and B summarized in 
Fig. 5, exist in this case. Region A is the entire area 
behind the circular heating zone (<, < - 1) and the 
domains of integration are s E [0, I] and 4 E [0,2x] 
covering the entire circle. Region B is the physical 
domain of the strip represented by - 1 < 5, < 1. The 
temperature level at a material point located at t, 
(represented by ah in Fig. 5) is contributed by all the 
differential heat sources within the area of &a. Only 
the differential heat sources in the shaded area con- 
tribute to its temperature rise. The domain of inte- 
gration is thus from 5, to 1 within the circular area. 
Similar to the previous cases in Figs. 4(b)-(d), region 
B is in contact with the heat-generation zone and 
singularities thus result in the numerical integrations. 
Unlike the previous cases with a In (r)-type of singu- 
larity, however, the singularity in this case is unre- 
movable and an asymptotic algorithm is used. The 

-Region A G--Region B -/ 

5, = -1 5, = 1 

FIG. 5. Regions A (5, < - 1) and B (- I < 5, < 1) at the 
transonic stage with M = 1 and the deviation 6 from a 

representative location of 5,. 
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location of <, is deviated to 5, -6, refer to Fig. 5, in 
the numerical integration from <, to 1. Convergence 
of the temperature distribution is then studied when 
6 approaches zero. 

NUMERICAL EXAMPLES 

The numerical algorithms thus developed are first 
validated by comparing to the solutions of diffusion 
obtained by Weichert and Schonert [12]. For a cir- 
cular heating zone propagating at speeds of 200 and 
1000 m s ‘. the diffusion model was employed to 
determine the temperature distributions. Their results 
are retrieved in equation (10) by substituting M by 
zero since the thermal wave speed is assumed infinity 
(C + rxl) in diffusion. The following parameters 

r,,=3xlO~“m. k= IWm ‘K ‘. 

a=5x10-‘m7s- (20) 

are used in their analysis. The heat intensity is assumed 
tobeconstant,q,, = 5x 10’XWm-‘. Forr= 200and 
1000 m s ’ and M = 0. Fig. 6 shows the temperature 
contours obtained by the present algorithm (the full 
circles) and those by Weichert and Schonert [ 121 (the 
solid lines). The dashed circle represent the physical 
domain of the heating zone which, according to equa- 
tion (9), has been normalized to 5, E [ - I, I] and 
t2e [ - 1, I]. The numerical integration employs the 
ten-point Gaussian quadrature formula which yields 
an excellent agreement. 

The thermal wave speed C plays a dominant role 
in the wave theory of heat conduction. Due to absence 
of this information for glass. we consider the material 
properties of 4340 steel with the following properties : 

r,, =4x lO~~‘m. k=34Wm~~‘K ‘, 

X= I.0x10~‘m2s~‘. q,,=S~lO’~Wrn~‘. 

C=900ms-‘. (21) 

The value of C (900 m s ’ for the thermal wave 

speed) is assumed here due to several unique features 
preserved in the transonic solution when compared to 
the experimental results [25], which also supports the 
use of the wave-type equation (1) for the present prob- 
Icm. In the sequel dimensionless temperature defined 
as T/(qA/k) will be used in presenting the temperature 
surfaces. 

(a) Gaussian distributions 

The distribution function f’ is needed in equation 
(IO) for numerical integrations. The Guassian dis- 
tribution 

,f’(_v Y) = eerc\‘+l?, (22) 

is first considered to model a moving laser source 
impinged upon the surface of a work-piece. The par- 
ameter five (5) in equation (22) is actually the recipro- 
cal of the square of the characteristic radius of a laser 
beam. This is the radius within which 63% of the 
incident energy lies. Figure 7 presents the temperature 
surfaces in transition of the thermal Mach number. 
The circular heating zone occupies the physical 
domainfor<,E[-l,l]and<,E[-l,l].Duetothesym- 
metry of the problem, however, only the results in the 
upper-half plane with C?E [0, l] are presented. In the 
subsonic regime shown by Figs. 7(a) and (b), the 
temperature level decreases when the thermal Mach 
number increases. In transition to the transonic stage 
shown by Fig. 7(c), the temperature level continuously 
decreases while the temperature surface warps around 
the edge due to formation of the normal shock surface. 
In comparison with the case of a point heat source 
[I. 21, temperature drop across the shock surface is 
much weaker. The corresponding case of diffusion 
with ~1 = 900 m s ’ and M = 0 is shown in Fig. 7(d) 
for comparisons. The temperature level predicted by 
the wave theory is about one order of magnitude 
lowly. The temperature surfaces in the supersonic 
regime are shown in Figs. 7(e) and (f). The tem- 
perature level slightly increases with the thermal Mach 

v = 1000 m/s, M = 0 (diffusion1 

51 
FIG. 6. Comparisons with the results of diffusion obtained by Weichert and Schiinert [12]. Full circles- 
present analysis. Solid line-Weichert and Schiinerts’ results. A4 = 0 and (a) L’ = 200 m s- ’ and (b) t’ = 1000 

m s-‘. 
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e = 0.3 

-M=2 

\M = 0.5 

FIG. 7. Evolution of temperature waves from subsonic ((a) and (b)), transonic ((c)), to supersonic ((e) 
and (f)) regimes. Heat intensity with a Gaussian distribution. 

number but is relatively minor in comparison with propagation and the problem can be modelled by the 
the case with a point heat source. Dimples in the one with a moving heat source [3-6, 12, 131. The heat 
temperature surfaces, refer to Figs. 7(c), (e) and (f), intensity in this case, unlike the externally controlled 
are the combined results of the distribution function of heating, is dictated by the stress and the plastic-strain- 
the heat intensity and the formation of thermal shock rate distributions developed in the vicinity of the crack 
surfaces (though weak in the present problem). For a tip. The product of the stress and the plastic strain 
circular heating zone propagating to the front, the rate tensors gives the dissipation rate of plastic energy 
high-temperature region shifts toward the rear end. which is converted to heat in crack propagation. Dis- 
While the thermal energy in the high-temperature tribution of thermal energy in the heating zone 
region is dissipating into the surrounding media, it is depends on the material type and is a weak function 
also confined by the thermal shock surface due to of the crack speed in the practical range. The l/r-type 
formation of the thermally undisturbed zone. Dimples distribution, with Y being the distance measured from 
in the temperature surfaces reflect the way in which the the moving crack tip, covers a wide range of engin- 
high-temperature reduces to the room temperature eering materials (such as metals) with a relatively brit- 
(assumed zero in this work) across the thermal shock tle behavior. The distribution function in equation 
surfaces. (22) is replaced by 

(b) l/r-type distributions 

In dynamic crack propagation, heat is generated at f‘(X> Y) = 1 

the crack tip due to intensified, high-rate plasticity 
J(x’+Y*) 

(23) 

induced by the crack speed. The localized heating in this case and equation (23) is employed in the 
zone is convecting with the crack tip in the history of numerical integrations of equation (10). The results 
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FIG. 8. Evolution of temperature waves from subsonic ((a) and (b)), transonic ((c)), to supersonic ((e) 
and (f)) regimes. Heat intensity with a l/r-type distribution. 

covering the entin: regimes of the thermal Mach num- 
ber are shown in Fig. 8. Due to the singular behavior 
in the distribution near the center at r = 0, as shown 
by Fig. 8(b), the temperature surface starts to distort 
at A4 = 0.5. Formation of the normal shock waves at 
M = 1, as shown in Fig. 8(c), promotes the distortion 
which presents a different situation from that in the 
previous case without a singularity. Comparing Figs. 
8(c) and (d) for the corresponding diffusion behavior, 

more significant differences result. The wave theory, 
however, still predicts a lower temperature level in 
comparison with diffusion. The cases in the supersonic 
regime with M = 2 and 5, respectively, are shown in 
Figs. 8(e) and (f). To be noticed is that the angular 
distribution of heat intensity is still not modelled in 
this example. Reflected by equation (23) the heat 
intensity has the same value for material points at the 
same distance from the center of the heating zone. For 
real problems in dynamic crack propagation, there- 
fore, the angular distribution should be addressed in 
equation (23) for a closer simulation. 

(c) l/jr-type distributions 
Some viscoplastic materials present a bounded plas- 

tic strain rate at the dynamically propagating crack 
tip while the stress field still possesses a l/,/r-type of 
singularity [5, 261. The plastic energy dissipation rate, 
and hence the thermal energy dissipation rate, conse- 
quently displays a 1 /Jr-type of singularity at the crack 
tip. For the sake of completeness, the results for this 
case are also obtained and shown in Fig. 9. The dis- 
tribution function in this case is replaced by 

1 
.f’(% Y) = TX2 +$) ,/4 

in integrating equation (10). From a mathematical 
point of view, the lJr-type distribution shown by (24) 
is less singular than the l/r-type distribution shown 
by (23). The warping behavior of the temperature 
surface, therefore, is between case (a) (Fig. 7) and (b) 
(Fig. 8). Similar behavior of the temperature sur- 
faces are observed in transition of the thermal Mach 
number. 
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e = 0.3 

FIG. 9. Evolution of temperature waves from subsonic ((a) and (b)), transonic ((c)), to supersonic ((e) 
and (f)) regimes. Heat intensity with a l/Jr-type distribution. 

In comparison with diffusion, refer to Figs. 7(d), 
8(d) and 9(d), we note that the temperature surfaces 
employing the wave theory are more oscillatory 
especially at the transonic and in the supersonic 
regimes. It directly implies a more pronounced wave 
behavior when the heating zone propagates at a higher 
speed [27]. 

CONCLUSION 

The temperature distribution around a fast-moving 
heat source with a finite dimension has been obtained 
by integrating the Green’s functions in the thermal 
wave theory. The procedure is illustrated by a heating 
zone with a circular geometry. Formation of the 
thermally undisturbed zone at the transonic stage and 
in the supersonic regime constitutes a complicated 
situation in numerical integrations for temperature. 
Unlike the diffusion theory where integrations are 
simply performed over the entire area of the heating 
zone, the heating zone has to be divided into several 
areas according to the location of the observation 

point. Regions A to B and the corresponding domains 
of integrations summarized in Fig. 4 illustrate this 
situation in terms of a heating zone with a circular 
shape. Should the geometry of the heating zone vary, 
these domains must be adjusted accordingly while the 
rest of the procedure in numerical integrations remain 
the same. Currently, the procedure has been suc- 
cessfully applied to the case with a rectangular heating 
zone and extension to the high-rate zone with a but- 
terfly shape existing in real problems of dynamic crack 
propagation is on the way. 

The present analysis is sufficient for externally con- 
trolled heatings with distributions and geometries 
known a priori. For modelling real problems in 
dynamic crack propagation, however, it also relies on 
a detailed description of the stress and strain fields in 
the near-tip region. In addition to the effort devoted 
to the geometry of the localized heating zone, the 
phonon-drag controlled process in high-rate plasticity 
[28] is currently implemented into the analysis to 
describe the heat-production rate. While the strain- 
rate effect is accommodated in describing the material 
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behavior in the near-tip region. we believe that the I I. 
thermal wave theory accoun&~ng for the high-rate 
response in heat conduction is more consistent in 
describing the local heating phenomenon. Lastly. ali 12. 
the thermaf properties have been assumed constant in 
this analysis. When the thermal conductivity becomes 
strongly dependent on the temperature gradient, 13. 

equation (I) becomes nonlinear and a major modi- 14. 
fication must be made to the current solutions to 
accommodate such an effect. 

is. 
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